a2 United States Patent

US009426466B2

10) Patent No.: US 9,426,466 B2

Van der Auwera et al. 45) Date of Patent: Aug. 23,2016
(54) TRANSFORM SKIP MODE USPC e 375/240.18
See application file for complete search history.
(71) Applicant: Qualcomm Incorporated, San Diego,
CA (US) (56) References Cited
(72) Inventors: Geert Van der Auwera, San Diego, U.S. PATENT DOCUMENTS
CA (US); Marta Karczewicz, San
Diego, CA (US) 2008/0198926 Al 8/2008 Bordes et al.
2010/0061447 Al* 3/2010 Tu .ccocerennene HO4N 21/234381
(73) Assignee: QUALCOMM Incorporated, San 375/240.03
Diego, CA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35
U.S.C. 154(b) by 523 days. WO 2013001279 A2 1/2013
(21) Appl. No.: 13/922,851 OTHER PUBLICATIONS
. Weijia Zhu et al.: “Non Transform Mode for Inter Coding”, 99.
(22) Filed: Jun. 20, 2013 MPEG Meeting; Feb. 2-6, 2012; San Jose; (Motion Picture Expert
. L Group or ISO/IEC JTC1/SC29/WG11), No. m22931, Jun. 7, 2012,
(65) Prior Publication Data XPO30051456.*
US 2013/0343464 Al Dec. 26, 2013 (Continued)
Related U.S. Application Data
. L Primary Examiner — Jamie Atala
(60) ggoxgilzonal application No. 61/663,453, filed on Jun. Assistant Examiner — Patrick Demosky
’ ’ (74) Attorney, Agent, or Firm — Shumaker & Sieffert, P.A.
(51) Imt. ClL
HO4N 19/122 (2014.01) 7 ABSTRACT
gzj% ;z;gg 6 (38138}) A device for coding video data includes a video coder
HO4N 19/12 (20 1 4' 01) configured to: determine for a chroma transform block (TB)
04N 19/136 (2014'01) a sub-sampling format for the chroma TB; based on the
.(0D) sub-sampling format for the chroma TB, identify one or
(Continued) more corresponding luma TBs; determine, for each of the
(52) US.CL one or more correqunding luma TBs, i.f the corresponding
CPC ... HO4N 19/00775 (2013.01); HO4N 19/12 luma TB is coded using a transform skip mode; and, based
. . on a number of the one or more corresponding luma TBs
(2014.11); HO4N 19/157 (2014.11); HO4N ber of th ponding luma TB
19/176 (2014.11); HO4N 19/186 (2014.11); coded using the transform skip mgde being greater than or
HO4N 19/60 (2014.11); HO4N 19/46 (2014.11) equal to a threshold value, determine that the chroma TB is
(58) Field of Classification Search coded in the transform skip mode.

CPC HO4AN 19/122; HO4N 19/60; HO4N 19/12;
HO4N 19/157; HO4N 19/176; HO4N 19/186

34 Claims, 8 Drawing Sheets

17

DETERMINE FOR A CHROMA TRANSFORM
BLOCK A SUB-SAMPLING FORMAT FOR THE
CHROMA TB

|

IDENTIFY ONE OR MORE CORRESPONDING
LUMA TBs

DETERMINE, FOR EACH OF THE ONE OR MORE
CORRESPONDING LUMA TBS, IF THE ONE OR
MORE LUMA TBs ARE CODED USING A
TRANSFORM SKIP MODE

|

BASED ON A NUMBER OF THE ONE OR MORE
‘CORRESPONDING LUMA TBs CODED USING
THE TRANSFORM SKIP MODE BEING
GREATER THAN OR EQUAL TO A THRESHOLD
'VALUE, ENCODING THE CHROMA TB IN THE
TRANSFORM SKIPPING MODE WITHOUT
‘GENERATING A SYNTAX ELEMENT
INDICATING THE CHROMA TB IS CODED
USING THE TRANSFORM SKIP MODE.

172

173

US 9,426,466 B2
Page 2

(51) Imt.CL
HO4N 19/157 (2014.01)
HO4N 19/46 (2014.01)
(56) References Cited

U.S. PATENT DOCUMENTS

2011/0013700 A1* 1/2011 Kim ...ccoviiiinnne HO4N 19/176
375/240.18
2011/0243225 Al1* 10/2011 Minviviinnnine HO4N 19/44
375/240.12
2012/0269258 Al* 10/2012 Yang HO4N 19/00163
375/240.02
2012/0328029 Al* 12/2012 Sadafale HO4N 19/176
375/240.29

2013/0016782 Al 1/2013 Sasai et al.
2013/0034152 Al 2/2013 Song et al.

OTHER PUBLICATIONS

Lan C et al.: “Intra transform skipping”, 9. JCT-VC Meeting; 100.
MPEG Meeting; Apr. 27-May 7, 2012; Geneva; (Joint Collaborative
Team on Video Coding of ISO/IEC JTC1/SC29/WG11 and ITU-T
SG.16), No. JCTVC-10408, Apr. 17, 2012, XP030112171, cited in
the application.™

Bross et al.: “High efficiency video coding (HEVC) text specifica-
tion draft 77, 9th Meeting: Geneva Apr. 27-May 7, 2012, Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16
WP3 and ISO/IEC JTC1/SC29/WG11.*

Bross et al., “High efficiency video coding (HEVC) text specifica-
tion draft 10 (for FDIS & Last Call),” 12th Meeting: Geneva, CH,
Jan. 14-23, 2013, JCTVC-L1003_v34, 310 pp.

Bross et al., “High efficiency video coding (HEVC) text specifica-
tion draft 7,” 9th Meeting: Geneva, CH, Apr. 27-May 7, 2012,
JCTVC-11003_d2, 290 pp.

Bross et al., “High efficiency video coding (HEVC) text specifica-
tion draft 8,” 10th Meeting: Stockholm, SE, Jul. 11-20, 2012,
JCTVC-J1003_d7, 261 pp.

Bross et al., “High efficiency video coding (HEVC) text specifica-
tion draft 6,” 8th Meeting: San Jose, CA, USA, Feb. 1-10, 2012,
JCTVC-H1003, 259 pp.

Bross et al., “High efficiency video coding (HEVC) text specifica-
tion draft 9,” 11th Meeting: Shanghai, CN, Oct. 10-19, 2012,
JCTVC-K1003_v7, 290 pp.

Bross et al.,, “WD4: Working Draft 4 of High-Efficiency Video
Coding,” 6th Meeting: JCTVC-F803_d2, Torino, IT, Jul. 14-22,
2011, 226 pp.

Bross et al.,, “WDS5: Working Draft 5 of High-Efficiency Video
Coding,” 7th Meeting: Geneva, Switzerland, Nov. 21-30, 2011,
JCTVC-G1103_d2, 214 pp.

International Preliminary Report on Patentability—PCT/US2013/
047087, The International Bureau of WIPO—Geneva, Switzerland,
Jul. 8, 2014, 17 pp.

International Search Report and Written Opinion—PCT/US2013/
047087—ISA/EPO—Jan. 20, 2014, 16 pp.

ITU-T H.264, Series H: Audiovisual and Multimedia Systems,
Infrastructure of audiovisual services—Coding of moving video,
Advanced video coding for generic audiovisual services, The Inter-
national Telecommunication Union. Jun. 2011, 674 pp.

Lan et al., “Intra Transform Skipping,” JCT-VC Meeting; MPEG
Meeting; Geneva; (Joint Colloborative Team on Video Coding of
ISO/IEC JTCL/SC29/WGI11 and ITU-T SG.16), No. JCTVC-
10408, Apr. 27-May 7, 2012, 6 pp.

Onno et al., “Combination of JO171 and J0389 for the non-
normative Encoder Selection of the Intra Transform Skip,” JCT-VC
Meeting; MPEG Meeting; Stockholm; (Joint Colloborative Team on
Video Coding of ISO/IEC JTC1/SC29/WG11 and ITU-T SG.16)
No. JCTVC-J0572, Jul. 11-20, 2012, 4 pp.

Partial International Search Report—PCT/US2013/047087—ISA/
EPO—Sep. 16, 2013.

Van Der Auwera et al., “Intra Transform Skipping: Smallest CU and
Implicit Chroma,” JCT-VC Meeting, MPEG Meeting; (Joint Col-
loborative Team on Video Coding of ISO/IEC JTC1/SC29/WGl1
and ITU-T SG.16), No. JCTVC-J026S, Jul. 11-20, 2012, 11 pp.
Wiegand et al., “WD2: Working Draft 2 of High-Efficiency Video
Coding,” JCTVC-D503, 4th Meeting: Daegu, KR, Jan. 20-28, 2011,
153 pp.

Wiegand et al., “WD3: Working Draft 3 of High-Efficiency Video
Coding,” Document JCTVC-E603, 5th Meeting: Geneva, CH, Mar.
16-23, 2011, 193 pp.

Wiegand et al., “WD1: Working Draft 1 of High-Efficiency Video
Coding”, JCTVC-C403, 3rd Meeting: Guangzhou, CN, Oct. 7-15,
2010, 137 pp.

Zhu et al, “Non Transform Mode for Inter Coding,” MPEG
Meeting; San Jose; (Motion Picture Expert Group or ISO/IEC
JTC1/SC29/WGl1), JCTVC_H0061, Feb. 1-10, 2012, 4 pp.
Bross et al., “Editors” Proposed Corrections to HEVC version 1,”
Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T
SG16 WP3 and ISO/IEC JTCLU/SC29/WGII1, 13th Meeting,
Incheon, KR, Apr. 18-26, 2013, 310 pp.

ITU-T H.265, Series H: Audiovisual and Multimedia Systems,
Infrastructure of audiovisual services—Coding of moving video,
High efficiency video coding, The International Telecommunication
Union, Apr. 2013, 317 pp.

Bross et al., “High Efficiency Video Coding (HEVC) Text Speci-
fication Draft 7,” Joint Collaborative Team on Video Coding (JCT-
VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, JCTV-
11003__d4, 9th Meeting: Geneva, CH, Apr. 27-May 7, 2012, 297 pp.

* cited by examiner

U.S. Patent Aug. 23,2016 Sheet 1 of 8 US 9,426,466 B2

/10
SOURCE DEVICE DESTINATION DEVICE
12 14
VIDEO SOURCE DISPLAY DEVICE
18 32
[—————
VIDEO I STORAGE | VIDEO
ENCODER DEVICE DECODER
20 |19 : 30
L
OUTPUT
INTERFACE - INPUT INTERFACE
28
z ,
16

FIG. 1

U.S. Patent Aug. 23,2016 Sheet 2 of 8 US 9,426,466 B2

Y
U Vv
4:2:0 sample format
FIG. 2A
Y U Vv
4:2:2 sample format
FIG. 2B
Y U Vv

4:4:4 sample format
FIG. 2C

U.S. Patent Aug. 23,2016 Sheet 3 of 8 US 9,426,466 B2

D0 0R0R0A0 A0
000000000000
20000000
0000000000000 000
©000R0EOELOHO O
0000000000000 000
@000 HLREOBGLORO®O
0000000000000 000
@000 e0RLELBO O
0000000000000 000
0606060060000
0000000000000 000
@000 e0ALALOBOBO
0000000000000 000
©00e0e0EeLELEO GO
0000000000000 000

16x16 CU with 4:2:0 Sample Formatting

(O Luma Sample
& Chroma Samples

0 @O
0000
®0 @0

FIG. 3

U.S. Patent Aug. 23,2016 Sheet 4 of 8 US 9,426,466 B2

OO OO
O000O0O0
OO00O0O0
DO D
O000O0
DY OO
O00O0O0
QOO
O000O0
QOO OO
OO0O0O0O0
OO
O00O0O0
DODOD
OO00O0O0

©
©
©
©
©
©

01%:101%101%10)4:101%101%1S
@000 E0ROEOHO GO
@000 H0eLEO0eO G0
@0 00RO EOLROBO GO
@000 e0RLEOBO GO
@000 eLROELOHO GO
@0 0L ELROLEOGO GO
©0O0B0EOEOLROHO GO
@000 e0e0eLe0 G0
@0 0R0EO0ELEOEO0 G0
0000000 BOBO GO
16x16 CU with 4:2:2 Sample Formatting

O Luma Sample
€ Chroma Samples

FIG. 4

US 9,426,466 B2

Sheet 5 of 8

Aug. 23, 2016

U.S. Patent

¢ Ol
- 1T ---—-----®""-"="-—""--""--"-"—mmT-""-""-""-""-"-"""""-"""-""""-""®"-"®"-"-"-"-\"-\" -"-"-"-"” "-"-"-""""-""—-"="-"=-=- || i |
0c |
29 ¥3AAOION3 03AIA |
S bleopl:! |
£ 19 — ‘aisay SM20714 03dIA — I
1IN 1INN :@wo "NOOTY T a3LoNYLSNOIIY N mm: _
ONIAOIN3I .m. NOILVZILNVND [Mné 1 .n__“__ — 7 m_hm__u.__ 4 _
AdO¥LIN3 ISHUIANI (17 I
/'y LINN _
ONISSID0Ud « I
‘a3dd VHLINI "
19 — 79
= ¥9 _
AHOWAW

1IN 33Nn1o1d | !
NOILVSNadNOD . |
NOILOW 43 _
[} A|_ I
75 |
6 ¢ 1INN _
SINIWI T3 XVLNAS NOILVIWILST |
SINZIDI44309 | NOILOW “

WHO4SNVYHL —_—
Tvnais3y L¥ LINN I
a3zILNVNO €5 ONISSIO0Nd _
% NOILOIa3¥d |
— 0S |

LINN o e , 1INN -
ONISSID0Ud S04 03AIA viva
‘ais3ad

US 9,426,466 B2

Sheet 6 of 8

Aug. 23, 2016

U.S. Patent

16

-
o3aia
a3aoodada

LINN
-ENRIE]

-t

h

76
AHONW3N
FANLOId

434

d3a0934 03dIA

9 9Old
$%0018 - — - _
Ivnais3y 88 .8 98

an UNn [| unn 1INN _
ONISSIDO0¥d ONISSID0¥d ANVAO |
06 "SNVYL "ANI dIMS "SNVYL 3SUIANI | |
A 4 !
¥8 68 _
1INN _
ONISSID0Nd SINIW3T3 34300 |
*a34d VHLNI XVLNAS ZLLNYND _
78 [
1INN _
NOILVSNIdINOD o9 _
NOILOW . 1INA _

- ——

_ SLNIWITI XVLINAS ONIa0O3a | Wv3dlsug

18 AJO¥INZ | | o3an

1INN a3dooN3
ONISSII0Nd _
NOILOId3¥d ot "
I

U.S. Patent Aug. 23,2016 Sheet 7 of 8 US 9,426,466 B2

171
pa

DETERMINE FOR A CHROMA TRANSFORM
BLOCK A SUB-SAMPLING FORMAT FOR THE
CHROMA TB

IDENTIFY ONE OR MORE CORRESPONDING
LUMA TBs

| 173
DETERMINE, FOR EACH OF THE ONE OR MORE
CORRESPONDING LUMA TBs, IF THE ONE OR
MORE LUMA TBs ARE CODED USING A
TRANSFORM SKIP MODE

174
Y pa

BASED ON A NUMBER OF THE ONE OR MORE
CORRESPONDING LUMA TBs CODED USING
THE TRANSFORM SKIP MODE BEING
GREATER THAN OR EQUAL TO A THRESHOLD
VALUE, ENCODING THE CHROMA TB IN THE
TRANSFORM SKIPPING MODE WITHOUT
GENERATING A SYNTAX ELEMENT
INDICATING THE CHROMA TB IS CODED
USING THE TRANSFORM SKIP MODE.

FIG. 7

U.S. Patent Aug. 23,2016 Sheet 8 of 8 US 9,426,466 B2

181
p

DETERMINE FOR A CHROMA TRANSFORM
BLOCK A SUB-SAMPLING FORMAT FOR THE
CHROMA TB

182
p

IDENTIFY ONE OR MORE CORRESPONDING
LUMA TBs

183
DETERMINE, FOR EACH OF THE ONE OR MORE
CORRESPONDING LUMA TBs, IF THE ONE OR
MORE LUMA TBs ARE CODED USING A
TRANSFORM SKIP MODE

184
pa

BASED ON A NUMBER OF THE ONE OR MORE
CORRESPONDING LUMA TBs CODED USING THE
TRANSFORM SKIPPING MODE BEING GREATER

THAN OR EQUAL TO A THRESHOLD VALUE,
DETERMINE THAT THE CHROMA TB IS CODED
IN THE TRANSFORM SKIP MODE

FIG. 8

US 9,426,466 B2

1
TRANSFORM SKIP MODE

This application claims the benefit of U.S. Provisional
Patent Application No. 61/663,453 filed 22 Jun. 2012, the
entire content of which is incorporated by reference herein.

TECHNICAL FIELD
This disclosure relates to video coding.
BACKGROUND

Digital video capabilities can be incorporated into a wide
range of devices, including digital televisions, digital direct
broadcast systems, wireless broadcast systems, personal
digital assistants (PDAs), laptop or desktop computers,
tablet computers, e-book readers, digital cameras, digital
recording devices, digital media players, video gaming
devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferenc-
ing devices, video streaming devices, and the like. Digital
video devices implement video compression techniques,
such as those described in the standards defined by MPEG-2,
MPEG-4, ITU-T H.263, ITU-T H.264/MPEG-4, Part 10,
Advanced Video Coding (AVC), the High Efficiency Video
Coding (HEVC) standard presently under development, and
extensions of such standards. The video devices may trans-
mit, receive, encode, decode, and/or store digital video
information more efficiently by implementing such video
compression techniques.

Video compression techniques perform spatial (intra-
picture) prediction and/or temporal (inter-picture) prediction
to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (i.e.,
a video frame or a portion of a video frame) may be
partitioned into video blocks, which may also be referred to
as treeblocks, coding units (CUs) and/or coding nodes.
Video blocks in an intra-coded (I) slice of a picture are
encoded using spatial prediction with respect to reference
samples in neighboring blocks in the same picture. Video
blocks in an inter-coded (P or B) slice of a picture may use
spatial prediction with respect to reference samples in neigh-
boring blocks in the same picture or temporal prediction
with respect to reference samples in other reference pictures.
Pictures may be referred to as frames, and reference pictures
may be referred to a reference frames.

Spatial or temporal prediction results in a predictive block
for a block to be coded. Residual data represents pixel
differences between the original block to be coded and the
predictive block. An inter-coded block is encoded according
to a motion vector that points to a block of reference samples
forming the predictive block, and the residual data indicat-
ing the difference between the coded block and the predic-
tive block. An intra-coded block is encoded according to an
intra-coding mode and the residual data. For further com-
pression, the residual data may be transformed from the
pixel domain to a transform domain, resulting in residual
transform coeflicients, which then may be quantized. The
quantized transform coefficients, initially arranged in a two-
dimensional array, may be scanned in order to produce a
one-dimensional vector of transform coefficients, and
entropy coding may be applied to achieve even more com-
pression.

SUMMARY

According to the techniques of this disclosure, a video
decoder may determine if a chroma transform block is coded

10

15

20

25

30

35

40

45

50

55

60

65

2

using a transform skip mode by identifying corresponding
luma transform blocks that correspond to the chroma trans-
form block. Based on how many of the luma transform
blocks are coded using the transform skip mode, the video
decoder can determine whether the chroma transform block
is coded using the transform skip mode without receiving a
syntax element to explicitly identify if the chroma transform
block is coded using the transform skip mode.

In one example, a method of decoding video data
includes: determining for a chroma transform block (TB) a
sub-sampling format for the chroma TB; based on the
sub-sampling format for the chroma TB, identifying one or
more corresponding luma TBs; receiving, for each of the one
or more corresponding luma TBs, a flag indicating if the
corresponding luma TB is coded using a transform skip
mode; and, based on a number of the one or more corre-
sponding luma TBs coded using the transform skip mode
being greater than or equal to a threshold value, determining
that the chroma TB is coded in the transform skip mode.

In another example, a method of decoding video data
includes: determining for a chroma transform block (TB) a
sub-sampling format for the chroma TB; based on the
sub-sampling format for the chroma TB, identifying one or
more corresponding luma TBs; generating, for each of the
one or more corresponding luma TBs, a flag indicating if the
corresponding luma TB is coded using a transform skip
mode; and, based on a number of the one or more corre-
sponding luma TBs coded using the transform skip mode
being greater than or equal to a threshold value, encoding the
chroma TB using the transform skip mode without gener-
ating a syntax element indicating the chroma TB is coded
using the transform skip mode.

In another example, a device for coding video data
includes a video coder configured to: determine for a chroma
transform block (TB) a sub-sampling format for the chroma
TB; based on the sub-sampling format for the chroma TB,
identify one or more corresponding luma TBs; determine,
for each of the one or more corresponding luma TBs, if the
corresponding luma TB is coded using a transform skip
mode; and based on a number of the one or more corre-
sponding luma TBs coded using the transform skip mode
being greater than or equal to a threshold value, determine
that the chroma TB is coded in the transform skip mode.

In another example, an apparatus for coding video data
includes: means for determining for a chroma transform
block (TB) a sub-sampling format for the chroma TB; means
for identifying one or more corresponding luma TBs based
on the sub-sampling format for the chroma TB; means for
coding, for each of the one or more corresponding luma TBs,
a flag indicating if the corresponding luma TB is coded using
a transform skip mode; and means for determining that the
chroma TB is coded in the transform skip mode based on a
number of the one or more corresponding luma TBs coded
using the transform skip mode being greater than or equal to
a threshold value.

In another example, a computer readable storage medium
storing instructions that when executed cause one or more
processors to: determine for a chroma transform block (TB)
a sub-sampling format for the chroma TB; identify one or
more corresponding luma TBs based on the sub-sampling
format for the chroma TB; code, for each of the one or more
corresponding luma TBs, a flag indicating if the correspond-
ing luma TB is coded using a transform skip mode; and,
determine that the chroma TB is coded in the transform skip
mode based on a number of the one or more corresponding
luma TBs coded using the transform skip mode being greater
than or equal to a threshold value.

US 9,426,466 B2

3

The details of one or more examples are set forth in the
accompanying drawings and the description below. Other
features, objects, and advantages will be apparent from the
description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating an example video
encoding and decoding system that may utilize the tech-
niques described in this disclosure.

FIGS. 2A-2C are conceptual diagrams illustrating differ-
ent sample formats for video data.

FIG. 3 is a conceptual diagram illustrating a 16x16 coding
unit formatted according to a 4:2:0 sample format.

FIG. 4 is a conceptual diagram illustrating a 16x16 coding
unit formatted according to a 4:2:2 sample format.

FIG. 5 is a block diagram illustrating an example video
encoder that may implement the techniques described in this
disclosure.

FIG. 6 is a block diagram illustrating an example video
decoder that may implement the techniques described in this
disclosure.

FIG. 7 is a flow diagram illustrating a method for encod-
ing video data in accordance with the techniques of this
disclosure.

FIG. 8 is a flow diagram illustrating a method for decod-
ing video data in accordance with the techniques of this
disclosure.

DETAILED DESCRIPTION

Various proposals for the emerging High Efficiency Video
Coding (HEVC) standard have included a transform skip
mode for coding transform units (TUs). The transform skip
mode may increase coding efficiency for some types of
video content. Various video coding standards, including the
HEVC standard, include the coding of residual data, which
represents a difference between an original block of video
data and a predicted block of video data, such as an inter
predicted block of video data or an intra predicted block of
video data. A video encoder typically transforms, quantizes,
and entropy encodes the residual data. The video encoder
transforms the residual data by applying a transform, such as
a discrete cosine transform (DCT), or some conceptually
similar transform, to the data in the pixel domain to produce
transform coefficients in a transform domain, and the video
encoder then quantizes the resulting transforming coeffi-
cients.

When a video decoder receives the encoded residual data,
the video decoder generally performs the inverse of the
operations performed by the video encoder. For example, the
video decoder may entropy decode quantized transform
coeflicients, dequantize the transform coefficients, and
finally perform an inverse transform process to transform the
transform coeflicients back to residual data in the pixel
domain. Once pixel domain residual data is obtained, the
video decoder may add the residual data to a predicted block
of video data to form a reconstructed block of video data.
The reconstructed video block approximates an original
block of video data. Various filter operations such as a
deblocking filter, sample adaptive offset (SAO), and/or an
adaptive loop filter (ALF) may be applied to the recon-
structed video block to further improve quality of recon-
structed video data.

In a transform skip mode, the transform and inverse
transform processes are skipped. In other words, a video
encoder may quantize and entropy encode the pixel domain

10

15

20

25

30

35

40

45

50

55

60

65

4

residual data, and a video decoder may entropy decode and
dequantize the pixel domain residual data. The pixel domain
data, however, is not transformed into a transform domain
by a video encoder. Likewise, because no transform domain
data is received by a video decoder, the video decoder need
not perform an inverse transform operation to transform the
residual data back to the pixel domain. The video encoder
generates flags for inclusion in the encoded video bitstream
to indicate if a particular TU is coded using transform
skipping. In some implementations, transform skipping may
only be used for certain types of TUs, such as 4x4 intra TUs.
Although this disclosure may describe several examples
with reference to 4x4 intra TUs, it should not be assumed
that the techniques of this disclosure are limited only to 4x4
intra TUs. The techniques of this disclosure may be extended
to other sizes of intra TUs as well as to inter TUs. Transform
skipping may, for example, be enabled by including a
“transform_skip_enabled_flag” syntax element in a param-
eter set, such as a sequence parameter set (SPS) or some
other parameter set, and by including a “transform_
skip_flag” syntax element (also potentially referred to as a
“ts_flag” syntax element) in the residual coding syntax. The
value of the “transform_skip_enabled_flag” syntax element
may enable or disable transform skipping for all TUs of a
sequence. When transform skipping is enabled for a
sequence (e.g. the “transform_skip_enabled_flag” is set to
true), each TU in the sequence can have an associated
“transform_skip_flag” syntax element to indicate if that TU
is coded using the transform skip mode. As used in this
disclosure, a value of true for a transform_skip_flag means
the TU is coded using a transform skip mode, and a value of
false for the transform_skip_flag means the TU is not coded
using a transform skip mode.

Various implementations of transform skip mode in
HEVC support 4x4 intra transform skipping for both lumi-
nance and chrominance components, thus requiring that
separate transform_skip_flag syntax elements be signaled
for luma and chroma 4x4 transform blocks (TBs). This
disclosure introduces techniques for deriving a
transform_skip_flag value for a chroma component based on
a chroma type (e.g. a sub-sampling format) and one or more
transform_skip_flag values associated with a luma compo-
nent. This disclosure uses terminology such as “derive a
chroma transform_skip_flag value for a chroma TB” so that
the processes for chroma TBs can be analogized to the
processes used for luma TBs, but when implementing the
techniques of this disclosure, no “transform_skip_flag” syn-
tax elements need to be included in an encoded bitstream.
Accordingly, when this disclosure discusses deriving a
chroma transform_skip_flag value, such description may be
broadly construed to mean determining whether or not a
chroma TB is coded using a transform skip mode. When
implementing the techniques of this disclosure, a
transform_skip_flag for chroma components does not need
to be included in the encoded bitstream, which may reduce
signaling overhead by reducing the number of syntax ele-
ments that need to be included in the encoded video bit-
stream.

The luma and chroma components of pixels in a CU or
TU may be coded in different sub-sampling formats. In one
proposal for HEVC, the luma and chroma components of a
pixel are coded in a 4:2:0 format. In a 4:2:0 pixel format, for
every 2x2 block of pixels, there are four luma components
and 2 chroma components (e.g., 1 Cr chroma component and
1 Cb chroma component). As such, in a 2x2 block of pixels,
the chroma components are sampled at %4 horizontal reso-
lution and /% vertical resolution. In a 4:2:2 pixel format, for
every 2x2 block of pixels, there are four luma components

US 9,426,466 B2

5

and 4 chroma components (e.g., 2 Cr chroma components
and 2 Cb chroma components). As such, for a 4:2:2 format,
the chroma components are sampled at one-half (V%) hori-
zontal resolution and full vertical resolution. The 4:4:4 pixel
format involves no sub-sampling of chroma components.
That is, for a 2x2 block of pixels, there are four luma
components, four Cr components, and four Cb components.

According to the techniques of this disclosure, a video
decoder may derive a chroma transform_skip_flag value for
a chroma TB from luma flag values by identifying corre-
sponding luma 4x4 intra TBs that correspond to the chroma
4x4 intra TB. The determination of how many luma 4x4
intra TBs correspond to the chroma 4x4 TB depends on the
chroma sub-sampling format used to code the chroma 4x4
TB.

According to one example, if the chroma format is 4:2:0,
then the video decoder may derive a chroma transform_
skip_flag value for a chroma TB from luma flag values by
identifying four luma 4x4 intra TBs that correspond to the
chroma 4x4 intra TB. If at least N out of the four luma 4x4
intra TBs have a transform_skip_flag value equal to true,
then the corresponding transform_skip_flag of the chroma
4x4 intra TB is set equal to true. N may be any value
between 1 and 4. Thus, if greater than 4-N out of the four
luma 4x4 intra TBs have a transform_skip_flag value equal
to false, then the corresponding transform_skip_flag of the
chroma 4x4 intra TB is set equal to false.

According to another example, if the chroma format is
4:2:2, then a video decoder may derive a chroma
transform_skip_flag value from luma flag values by identi-
fying two horizontally adjacent (left and right of each other)
luma 4x4 intra TBs that correspond to one chroma 4x4 intra
TB. In one implementation, the video decoder may deter-
mine that the chroma transform_skip_flag has a value of
true, if at least one corresponding luma flag equals true. In
this implementation, the video decoder may determine that
the chroma transform_skip_flag has a value of false, only if
both corresponding luma flags equal to false. Alternatively,
the video decoder may determine that the chroma
transform_skip_flag has a value of true, only if both corre-
sponding luma flags equal true. In this alternate implemen-
tation, the video decoder may determine that the chroma
transform_skip_flag has a value of false, if at least one
corresponding luma flag equals false.

According to another example, if the chroma format is
4:4:4, then a video decoder can derive a chroma
transform_skip_flag value from luma flag values by, for each
luma 4x4 intra TB, identifying one corresponding chroma
4x4 intra TB The video decoder may then derive a value of
true for the chroma transform_skip_flag if the corresponding
luma transform_skip_flag equals true, or the video decoder
may derive a value of false for the chroma transform_
skip_flag if the corresponding luma transform_skip_flag
equals false.

FIG. 1 is a block diagram illustrating an example video
encoding and decoding system 10 that may utilize the
techniques described in this disclosure. As shown in FIG. 1,
system 10 includes a source device 12 that generates
encoded video data to be decoded at a later time by a
destination device 14. According to the techniques of this
disclosure, source device 12 may, for example, generate
encoded video data that includes residual data coded using
a transform skip mode, and likewise destination device 14
may decode the video data including the residual data coded
using a transform skip mode. Source device 12 and desti-
nation device 14 may comprise any of a wide range of
devices, including desktop computers, notebook (i.e., lap-

10

15

20

25

30

35

40

45

50

55

60

65

6

top) computers, tablet computers, set-top boxes, telephone
handsets such as so-called “smart” phones, so-called
“smart” pads, televisions, cameras, display devices, digital
media players, video gaming consoles, video streaming
device, or the like. In some cases, source device 12 and
destination device 14 may be equipped for wireless com-
munication.

Destination device 14 may receive the encoded video data
to be decoded via a link 16. Link 16 may comprise any type
of medium or device capable of moving the encoded video
data from source device 12 to destination device 14. In one
example, link 16 may comprise a communication medium to
enable source device 12 to transmit encoded video data
directly to destination device 14 in real-time. The encoded
video data may be modulated according to a communication
standard, such as a wireless communication protocol, and
transmitted to destination device 14. The communication
medium may comprise any wireless or wired communica-
tion medium, such as a radio frequency (RF) spectrum or
one or more physical transmission lines. The communica-
tion medium may form part of a packet-based network, such
as a local area network, a wide-area network, or a global
network such as the Internet. The communication medium
may include routers, switches, base stations, or any other
equipment that may be useful to facilitate communication
from source device 12 to destination device 14.

Alternatively, encoded data may be output from output
interface 22 to a storage device 19. Similarly, encoded data
may be accessed from storage device 19 by input interface.
Storage device 19 may include any of a variety of distributed
or locally accessed data storage media such as a hard drive,
Blu-ray discs, DVDs, CD-ROMs, flash memory, volatile or
non-volatile memory, or any other suitable digital storage
media for storing encoded video data. In a further example,
storage device 19 may correspond to a file server or another
intermediate storage device that may hold the encoded video
generated by source device 12. Destination device 14 may
access stored video data from storage device 19 via stream-
ing or download. The file server may be any type of server
capable of storing encoded video data and transmitting that
encoded video data to the destination device 14. Example
file servers include a web server (e.g., for a website), an FTP
server, network attached storage (NAS) devices, or a local
disk drive. Destination device 14 may access the encoded
video data through any standard data connection, including
an Internet connection. This may include a wireless channel
(e.g., a Wi-Fi connection), a wired connection (e.g., DSL,
cable modem, etc.), or a combination of both that is suitable
for accessing encoded video data stored on a file server. The
transmission of encoded video data from storage device 19
may be a streaming transmission, a download transmission,
or a combination of both.

The techniques of this disclosure are not necessarily
limited to wireless applications or settings. The techniques
may be applied to video coding in support of any of a variety
of multimedia applications, such as over-the-air television
broadcasts, cable television transmissions, satellite televi-
sion transmissions, streaming video transmissions, e.g., via
the Internet, encoding of digital video for storage on a data
storage medium, decoding of digital video stored on a data
storage medium, or other applications. In some examples,
system 10 may be configured to support one-way or two-
way video transmission to support applications such as
video streaming, video playback, video broadcasting, and/or
video telephony.

In the example of FIG. 1, source device 12 includes a
video source 18, video encoder 20 and an output interface

US 9,426,466 B2

7

22. In some cases, output interface 22 may include a
modulator/demodulator (modem) and/or a transmitter. In
source device 12, video source 18 may include a source such
as a video capture device, e.g., a video camera, a video
archive containing previously captured video, a video feed
interface to receive video from a video content provider,
and/or a computer graphics system for generating computer
graphics data as the source video, or a combination of such
sources. As one example, if video source 18 is a video
camera, source device 12 and destination device 14 may
form so-called camera phones or video phones. However,
the techniques described in this disclosure may be applicable
to video coding in general, and may be applied to wireless
and/or wired applications.

The captured, pre-captured, or computer-generated video
may be encoded by video encoder 20. The encoded video
data may be transmitted directly to destination device 14 via
output interface 22 of source device 12. The encoded video
data may also (or alternatively) be stored onto storage device
19 for later access by destination device 14 or other devices,
for decoding and/or playback.

Destination device 14 includes an input interface 28, a
video decoder 30, and a display device 32. In some cases,
input interface 28 may include a receiver and/or a modem.
Input interface 28 of destination device 14 receives the
encoded video data over link 16. The encoded video data
communicated over link 16, or provided on storage device
19, may include a variety of syntax elements generated by
video encoder 20 for use by a video decoder, such as video
decoder 30, in decoding the video data. Such syntax ele-
ments may be included with the encoded video data trans-
mitted on a communication medium, stored on a storage
medium, or stored a file server.

Display device 32 may be integrated with, or external to,
destination device 14. In some examples, destination device
14 may include an integrated display device and also be
configured to interface with an external display device. In
other examples, destination device 14 may be a display
device. In general, display device 32 displays the decoded
video data to a user, and may comprise any of a variety of
display devices such as a liquid crystal display (LCD), a
plasma display, an organic light emitting diode (OLED)
display, or another type of display device.

Video encoder 20 and video decoder 30 may operate
according to a video compression standard, such as the High
Efficiency Video Coding (HEVC) standard presently under
development, and may conform to the HEVC Test Model
(HM). A recent draft of the HEVC standard, referred to as
“HEVC Working Draft 77 or “WD?7,” is described in docu-
ment HCTVC-11003, Bross et al., “High Efficiency Video
Coding (HEVC) Text Specification Draft 7, Joint Collab-
orative Team on Video Coding (JCT-VC) of ITU-T SG16
WP3 and ISO/IEC JTC1/SC29/WG11, 9 Meeting: Geneva,
Switzerland, 27 Apr. 2012 to 7 May 2012, which, as of 19
Jun. 2013, is downloadable from http://phenix.it-sudpari-
s.ew/jet/doc_end_user/documents/9_Geneva/wgl1/JCTVC-
11003-v3.zip. Development of the HEVC standard is ongo-
ing, and a newer draft of the upcoming HEVC standard,
referred to as “HEVC Working Draft 10” or “HEVC
WD10,” is described in Bross et al., “Editors’ proposed
corrections to HEVC version 1,” Joint Collaborative Team
on Video Coding (JCT-VC) of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WG11, 13% Meeting, Incheon, KR,
April 2013, which as of 19 Jun. 2013, is available from
http://phenix.int-evey.fr/jct/doc_end_user/documents/
13_Incheon/wgl11/JCTVC-M0432-v3.zip, the entire content
of which is hereby incorporated by reference.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

Video encoder 20 and video decoder 30 may alternatively
operate according to other proprietary or industry standards,
such as the ITU-T H.264 standard, alternatively referred to
as MPEG-4, Part 10, Advanced Video Coding (AVC), or
extensions of such standards. The techniques of this disclo-
sure, however, are not limited to any particular coding
standard. Other examples of video compression standards
include MPEG-2 and ITU-T H.263.

Although not shown in FIG. 1, in some aspects, video
encoder 20 and video decoder 30 may each be integrated
with an audio encoder and decoder, and may include appro-
priate MUX-DEMUX units, or other hardware and software,
to handle encoding of both audio and video in a common
data stream or separate data streams. If applicable, in some
examples, MUX-DEMUX units may conform to the ITU
H.223 multiplexer protocol, or other protocols such as the
user datagram protocol (UDP).

Video encoder 20 and video decoder 30 each may be
implemented as any of a variety of suitable encoder cir-
cuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits
(ASICs), field programmable gate arrays (FPGAs), discrete
logic, software, hardware, firmware or any combinations
thereof. When the techniques are implemented partially in
software, a device may store instructions for the software in
a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more
processors to perform the techniques of this disclosure. Each
of video encoder 20 and video decoder 30 may be included
in one or more encoders or decoders, either of which may be
integrated as part of a combined encoder/decoder (CODEC)
in a respective device.

The JCT-VC is working on development of the HEVC
standard. The HEVC standardization efforts are based on an
evolving model of a video coding device referred to as the
HEVC Test Model (HM). The HM presumes several addi-
tional capabilities of video coding devices relative to exist-
ing devices according to, e.g., ITU-T H.264/AVC. For
example, whereas H.264 provides nine intra-prediction
encoding modes, the HM may provide as many as thirty-
three intra-prediction encoding modes.

In general, the working model of the HM describes that a
video frame or picture may be divided into a sequence of
treeblocks or largest coding units (LCU) that include both
luma and chroma samples. A treeblock has a similar purpose
as a macroblock of the H.264 standard. A slice includes a
number of consecutive treeblocks in coding order. A video
frame or picture may be partitioned into one or more slices.
Each treeblock may be split into coding units (CUs) accord-
ing to a quadtree. For example, a treeblock, as a root node
of the quadtree, may be split into four child nodes, and each
child node may in turn be a parent node and be split into
another four child nodes. A final, unsplit child node, as a leaf
node of the quadtree, comprises a coding node, i.e., a coded
video block. Syntax data associated with a coded bitstream
may define a maximum number of times a treeblock may be
split, and may also define a minimum size of the coding
nodes.

A CU includes a coding node and prediction units (PUs)
and transform units (TUs) associated with the coding node.
A size of the CU corresponds to a size of the coding node
and must be square in shape. The size of the CU may range
from 8x8 pixels up to the size of the treeblock with a
maximum of 64x64 pixels or greater. Each CU may contain
one or more PUs and one or more TUs. Syntax data
associated with a CU may describe, for example, partition-
ing of the CU into one or more PUs. Partitioning modes may

US 9,426,466 B2

9

differ between whether the CU is skip or direct mode
encoded, intra-prediction mode encoded, or inter-prediction
mode encoded. PUs may be partitioned to be non-square in
shape. Syntax data associated with a CU may also describe,
for example, partitioning of the CU into one or more TUs
according to a quadtree. A TU can be square or non-square
in shape.

The HEVC standard allows for transformations according
to TUs, which may be different for different CUs. The TUs
are typically sized based on the size of PUs within a given
CU defined for a partitioned LCU, although this may not
always be the case. The TUs are typically the same size or
smaller than the PUs. In some examples, residual samples
corresponding to a CU may be subdivided into smaller units
using a quadtree structure known as “residual quad tree”
(RQT). The leaf nodes of the RQT may be referred to as
transform units (TUs). Pixel difference values associated
with the TUs may be transformed to produce transform
coeflicients, which may be quantized.

In general, a PU includes data related to the prediction
process. For example, when the PU is intra-mode encoded,
the PU may include data describing an intra-prediction mode
for the PU. As another example, when the PU is inter-mode
encoded, the PU may include data defining a motion vector
for the PU. The data defining the motion vector for a PU may
describe, for example, a horizontal component of the motion
vector, a vertical component of the motion vector, a reso-
Iution for the motion vector (e.g., one-quarter pixel precision
or one-eighth pixel precision), a reference picture to which
the motion vector points, and/or a reference picture list (e.g.,
List 0, List 1, or List C) for the motion vector.

In general, a TU is used for the transform and quantization
processes. A given CU having one or more PUs may also
include one or more transform units (TUs). Following
prediction, video encoder 20 may calculate residual values
corresponding to the PU. The residual values comprise pixel
difference values that may be transformed into transform
coeflicients, quantized, and scanned using the TUs to pro-
duce serialized transform coefficients for entropy coding.
This disclosure typically uses the term “video block™ to refer
to a coding node of a CU. In some specific cases, this
disclosure may also use the term “video block™ to refer to a
treeblock, i.e., LCU, or a CU, which includes a coding node
and PUs and TUs.

A video sequence typically includes a series of video
frames or pictures. A group of pictures (GOP) generally
comprises a series of one or more of the video pictures. A
GOP may include syntax data in a header of the GOP, a
header of one or more of the pictures, or elsewhere, that
describes a number of pictures included in the GOP. Each
slice of a picture may include slice syntax data that describes
an encoding mode for the respective slice. Video encoder 20
typically operates on video blocks within individual video
slices in order to encode the video data. A video block may
correspond to a coding node within a CU. The video blocks
may have fixed or varying sizes, and may differ in size
according to a specified coding standard.

As an example, the HM supports prediction in various PU
sizes. Assuming that the size of a particular CU is 2Nx2N,
the HM supports intra-prediction in PU sizes of 2Nx2N or
NxN, and inter-prediction in symmetric PU sizes of 2Nx2N,
2NxN, Nx2N, or NxN. The HM also supports asymmetric
partitioning for inter-prediction in PU sizes of 2NxnU,
2NxnD, n[L.x2N, and nRx2N. In asymmetric partitioning,
one direction of a CU is not partitioned, while the other
direction is partitioned into 25% and 75%. The portion of the

9

CU corresponding to the 25% partition is indicated by an “n

10

15

20

25

30

35

40

45

55

60

10
followed by an indication of “Up”, “Down,” “Left,” or
“Right.” Thus, for example, “2NxnU” refers to a 2Nx2N CU
that is partitioned horizontally with a 2Nx0.5N PU on top
and a 2Nx1.5N PU on bottom.

In this disclosure, “NxN” and “N by N” may be used
interchangeably to refer to the pixel dimensions of a video
block in terms of vertical and horizontal dimensions, e.g.,
16x16 pixels or 16 by 16 pixels. In general, a 16x16 block
will have 16 pixels in a vertical direction (y=16) and 16
pixels in a horizontal direction (x=16). Likewise, an NxN
block generally has N pixels in a vertical direction and N
pixels in a horizontal direction, where N represents a non-
negative integer value. The pixels in a block may be
arranged in rows and columns. Moreover, blocks need not
necessarily have the same number of pixels in the horizontal
direction as in the vertical direction. For example, blocks
may comprise NxM pixels, where M is not necessarily equal
to N.

Thus, according to the HEVC, a CU may include one or
more prediction units (PUs) and/or one or more transform
units (TUs). This disclosure also uses the term “block”,
“partition,” or “portion” to refer to any of a CU, PU, or TU.
In general, “portion” may refer to any sub-set of a video
frame. Further, this disclosure typically uses the term “video
block™ to refer to a coding node of a CU. In some specific
cases, this disclosure may also use the term “video block™ to
refer to a treeblock, i.e., LCU, or a CU, which includes a
coding node and PUs and TUs. Thus, a video block may
correspond to a coding node within a CU and video blocks
may have fixed or varying sizes, and may differ in size
according to a specified coding standard.

A video sampling format, which may also be referred to
as a chroma format, may define the number of chroma
samples included in a CU with respect to the number of luma
samples included in a CU. Depending on the video sampling
format for the chroma components, the size, in terms of
number of samples, of the U and V components may be the
same as or different from the size of the Y component. In the
H.264/AVC standard and draft versions of the HEVC stan-
dard, a value called chroma_format_idc is defined to indi-
cate different sampling formats of the chroma components,
relative to the luma component. In HEVC WDS,
chroma_format_idc is signaled in the SPS. Table 1 illustrates
the relationship between values of chroma_format_idc and
associated chroma formats.

TABLE 1

different chroma formats defined in H.264/AVC

chroma_ format_idc chroma format SubWidthC SubHeightC

monochrome
4:2:0
4:2:2
4:4:4

W= O
—~ro |
=

In Table 1, the variables SubWidthC and SubHeightC can
be used to indicate the horizontal and vertical sampling rate
ratio between the number of samples for the luma compo-
nent and the number of samples for each chroma component.
In the chroma formats described in Table 1, the two chroma
components have the same sampling rate.

In the example of Table 1, for the 4:2:0 format, the
sampling rate for the luma component is twice that of the
chroma components for both the horizontal and vertical
directions. As a result, for a coding unit formatted according
to the 4:2:0 format, the width and height of an array of

US 9,426,466 B2

11

samples for the luma component are twice that of each array
of samples for the chroma components. Similarly, for a
coding unit formatted according to the 4:2:2 format, the
width of an array of samples for the luma component is
twice that of the width of an array of samples for each
chroma component, but the height of the array of samples
for the luma component is equal to the height of an array of
samples for each chroma component. For a coding unit
formatted according to the 4:4:4 format, an array of samples
for the luma component has the same width and height as an
array of samples for each chroma component. It should be
noted that in addition to the YUV color space, video data can
be defined according to an RGB space color. In this manner,
the chroma formats described herein may apply to either the
YUV or RGB color space. RGB chroma formats are typi-
cally sampled such that the number of red samples, the
number of green samples and the number of blue samples
are equal. Thus, the term “4:4:4 chroma format” as used
herein may refer to either a YUV color space or an RGB
color space wherein the number of samples is equal for all
color components.

FIGS. 2A-2C are conceptual diagrams illustrating differ-
ent sample formats for video data. FIG. 2A is a conceptual
diagram illustrating the 4:2:0 sample format. As illustrated
in FIG. 2A, for the 4:2:0 sample format, the chroma com-
ponents are one quarter of the size of the luma component.
Thus, for a CU formatted according to the 4:2:0 sample
format, there are four luma samples for every sample of a
chroma component. FIG. 2B is a conceptual diagram illus-
trating the 4:2:2 sample format. As illustrated in FIG. 2B, for
the 4:2:2 sample format, the chroma components are one
half of the size of the luma component. Thus, for a CU
formatted according to the 4:2:2 sample format, there are
two luma samples for every sample of a chroma component.
FIG. 2C is a conceptual diagram illustrating the 4:4:4 sample
format. As illustrated in FIG. 2C, for the 4:4:4 sample
format, the chroma components are the same size of the
luma component. Thus, for a CU formatted according to the
4:4:4 sample format, there is one luma sample for every
sample of a chroma component.

FIG. 3 is a conceptual diagram illustrating an example of
a 16x16 coding unit formatted according to a 4:2:0 sample
format. FIG. 3 illustrates the relative position of chroma
samples with respect to luma samples within a CU. As
described above, a CU is typically defined according to the
number of horizontal and vertical luma samples. Thus, as
illustrated in FIG. 3, a 16x16 CU formatted according to the
4:2:0 sample format includes 16x16 samples of luma com-
ponents and 8x8 samples for each chroma component.
Further, as described above, a CU may be partitioned into
smaller CUs. For example, the CU illustrated in FIG. 3 may
be partitioned into four 8x8 CUs, where each 8x8 CU
includes 8x8 samples for the luma component and 4x4
samples for each chroma component.

FIG. 4 is a conceptual diagram illustrating an example of
a 16x16 coding unit formatted according to a 4:2:2 sample
format. FIG. 4 illustrates the relative position of chroma
samples with respect to luma samples within a CU. As
described above, a CU is typically defined according to the
number of horizontal and vertical luma samples. Thus, as
illustrated in FIG. 4, a 16x16 CU formatted according to the
4:2:2 sample format includes 16x16 samples of luma com-
ponents and 8x16 samples for each chroma component.
Further, as described above, a CU may be partitioned into
smaller CUs. For example, the CU illustrated in FIG. 4 may

10

15

20

25

30

35

40

45

50

55

60

65

12

be partitioned into four 8x8 CUs, where each CU includes
8x8 samples for the luma component and 4x8 samples for
each chroma component.

Following intra-predictive or inter-predictive coding
using the PUs of a CU, video encoder 20 may calculate
residual data for the TUs of the CU. The PUs may comprise
pixel data in the spatial domain (also referred to as the pixel
domain) and the TUs may comprise coefficients in the
transform domain following application of a transform, e.g.,
a discrete cosine transform (DCT), an integer transform, a
wavelet transform, or a conceptually similar transform to
residual video data. The residual data may correspond to
pixel differences between pixels of the unencoded picture
and prediction values corresponding to the PUs. Video
encoder 20 may form the TUs including the residual data for
the CU, and then transform the TUs to produce transform
coeflicients for the CU. As introduced previously, video
encoder 20 may alternatively code the TUs in a transform
skip mode in which the residual data is quantized and
entropy coded but not transformed.

Video encoder 20 may perform quantization of the trans-
form coefficients in instances when a transform is applied or
may perform quantization on the pixel domain data when the
TU is coded in a transform skip mode. Quantization gener-
ally refers to a process in which values (e.g. transform
coeflicients or pixel domain values) are quantized to possi-
bly reduce the amount of data used to represent the values,
providing further compression. The quantization process
may reduce the bit depth associated with some or all of the
values. For example, an n-bit value may be rounded down to
an m-bit value during quantization, where n is greater than
m.

In some examples, video encoder 20 may utilize a pre-
defined scan order to scan the quantized transform coeffi-
cients, or pixel domain residual values ifa TU is coded in a
transform skip mode, to produce a serialized vector that can
be entropy encoded. In other examples, video encoder 20
may perform an adaptive scan. After scanning the quantized
transform coefficients or pixel domain residual values to
form a one-dimensional vector, video encoder 20 may
entropy encode the one-dimensional vector, e.g., according
to context adaptive variable length coding (CAVLC), con-
text adaptive binary arithmetic coding (CABAC), syntax-
based context-adaptive binary arithmetic coding (SBAC),
Probability Interval Partitioning Entropy (PIPE) coding or
another entropy encoding methodology. Video encoder 20
may also entropy encode syntax elements associated with
the encoded video data for use by video decoder 30 in
decoding the video data.

To perform CABAC, video encoder 20 may assign a
context within a context model to a symbol to be transmit-
ted. The context may relate to, for example, whether neigh-
boring values of the symbol are non-zero or not. The
transform_skip_flag may, for example, be CABAC coded
with one context per luma/chroma component, or alterna-
tively, the transform_skip_flag may be bypass coded. To
perform CAVLC, video encoder 20 may select a variable
length code for a symbol to be transmitted. Codewords in
VLC may be constructed such that relatively shorter codes
correspond to more probable symbols, while longer codes
correspond to less probable symbols. In this way, the use of
VLC may achieve a bit savings over, for example, using
equal-length codewords for each symbol to be transmitted.
The probability determination may be based on a context
assigned to the symbol.

Transform skipping for 4x4 intra TUs has been adopted
into the working draft of the HEVC standard. In a transform

US 9,426,466 B2

13
skip mode, quantization is applied to residual values without
applying a transform. The quantized residual values are then
signaled in a video bitstream using, for example, variable
length coding or other coding techniques. Except for adding
one flag to indicate whether a 4x4 intra TU is coded in a
transform skip mode or a transform mode, the introduction
of transform skipping generally does not require alteration to
the prediction, quantization (scaling), in-loop filters, and
entropy coding modules of an encoder, decoder or combined
codec. Transform skipping may be enabled by a
transform_skip_enabled_flag that is present in a parameter
set such as an SPS for coded video and by a ts_flag (also
called a transform_skip_flag) in the residual coding syntax.

One particular mode for transform skipping for 4x4 intra
TU’s is described in JCTVC-10408, “Intra transform skip-
ping” (C. Lan (Xidian Univ.), J. Xu, G. J. Sullivan, F. Wu
(Microsoft), hereinafter “Lan document”). The Lan docu-
ment described the following modifications for implement-
ing transform skip mode:

(a) Prediction: No change.

(b) Transform: Skipped. Instead, for transform skipping
TUs, a simple scaling process is used. As a 4x4 inverse
transform in the current design scales down the coefficients
by 32, to let transform skipping TUs have similar magni-
tudes as other TUs, a scaling-down process by 32 is per-
formed on transform skipping TUs.

(¢) De-quantization and scaling. No change.

(d) Entropy coding: A flag for each 4x4 intra TU is sent by
an encoder, and received by a decoder, to indicate if the
transform to a TU containing residual error values is
bypassed or not. Two contexts are added to code the flag for
Y, U and V TUs.

(e) Deblocking, SAO and ALF: No change.

() A flag in the SPS is signaled to indicate whether trans-
form skipping is enabled or not.

(g) No change to the quantization process for TUs with
transform skipping. That is also the case when quantization
matrices are used. Because it may not be reasonable to have
different quantization parameters according to spatial loca-
tions for those TUs with transform skipping, it was also
suggested that the default quantization matrix be changed to
a flat matrix for 4x4 intra TUs, when transform skipping is
enabled. The other reason is that a small transform tends to
use a flat quantization matrix. An alternative to this is to
leave to the encoder how to better use quantization matrix
and transform skipping simultaneously.

In other examples, for TUs of any size or any prediction
mode (inter or intra), one or more so-called “transform skip
modes” may be supported. With transform skipping, instead
of always applying a 2-D transform to a residual block, the
transform skip mode (or modes) may offer more choices. In
one example, the transform mode choices may include: 2-D
transform, no transform, horizontal transform (vertical
transform is skipped), and vertical transform (horizontal
transform is skipped). The choice of the transform can be
signaled to the decoder as part of an encoded bitstream, e.g.,
for each block the transform may be signaled or derivable.

A transform_skip_flag is currently signaled for every 4x4
intra TU that is chosen within a residual quadtree transform

10

15

20

25

30

35

40

45

50

55

60

65

14

(RQT) within an intra-coded coding unit (CU) of any
allowed size. However, it has been observed that for some
types of video data, such as low motion video for example,
most of the coding efficiency from intra transform skipping
is achieved when the smallest coding unit (SCU) size is
chosen by the video encoder. Therefore, signaling trans-
form_skip_flags for CUs of all sizes may at times produce
an undesirable computational and signaling overhead. The
techniques of this disclosure may, in some instances, reduce
this undesirable overhead by not coding transform_
skip_flags for CUs that are not SCUs and only coding
transform_skip_flags for CUs that are SCUs.

The current transform skip method supports 4x4 intra
transform skipping for both luminance and chrominance
components, meaning that the transform_skip_flag is sig-
naled for both luma and chroma 4x4 intra TUs. The HM
encoder for WD7 has two modes (“normal” and “fast”). In
the normal encoder mode, full rate distortion optimization
(RDO) is performed for both luma and chroma indepen-
dently. In the fast encoder mode, full RDO is not performed
for chroma independently, but in the fast encoder mode, the
chroma transform_skip_flags are still signaled for both luma
and chroma TBs, which again may create an undesirable
overhead. It has been observed that the coding efficiency of
chroma 4x4 intra TU transform skipping is limited. Accord-
ingly, this disclosure describes techniques for deriving
chroma transform_skip_flags based on luma transform flags
at both an encoder and a decoder, such that the
transform_skip_flags for chroma TBs do not need to be
included in the encoded bitstream. Thus, a video encoder
configured in accordance with the techniques of this disclo-
sure, such as video encoder 20, may encode a TB using a
transform skip mode without generating a dedicated syntax
element indicating the chroma TB is coded using the trans-
form skip mode. Similarly, a video decoder configured in
accordance with the techniques of this disclosure, such as
video decoder 30, may decode a TB using a transform skip
mode without receiving a dedicated syntax element indicat-
ing the chroma TB is coded using the transform skip mode.

To potentially further reduce the overhead from signaling
the transform_skip_flag for every 4x4 intra TU for each CU
size, techniques of this disclosure also include restricting the
signaling of the transform_skip_flag to the smallest CU size
only, which is determined by the appropriate configuration
parameters for the encoder and decoder (for example, SPS
syntax parameter log 2_min_coding_block_size_minus3).
Video encoder 20 and video decoder 30 may be configured
to use any or all of these techniques, alone or in any
combination. Thus, for CUs that are not the smallest allowed
CU size, a video encoder may not generate a
transform_skip_flag, and a video decoder may not receive a
transform_skip_flag.

Table 2 illustrates an example change to the residual
coding syntax that may implement the techniques of this
disclosure. The portion of the code below that reads “log
2CbSize=—Log 2MinCbSize” (italicized in Table 2) restricts
the transmitting and receiving of a transform_skip_flag to
instances when the size of a CU being coded is equal to the
smallest size enabled for CUs. The smallest size enabled for
a CU can be determined from a parameter set such as an SPS
or some other parameter set.

US 9,426,466 B2

15
TABLE 2

16

Residual coding syntax change to restrict signaling of transform skip flag to SCU

residual__coding(%0, y0, log2TrafoWidth, log2TrafoHeight, scanldx, cldx) { Descriptor

if(log2TrafoWidth = = 1 || log2TrafoHeight = = 1) {
log2TrafoWidth = 2
log2TrafoHeight = 2

If(transform_ skip_ enabled_ flag && !cu_transquant_ bypass_ flag &&

PredMode = = MODE__INTRA) && (log2ChSize = = Log2MinChSize) &&

(log2TrafoWidth = = 2) && (log2TrafoHeight = = 2))
transform_ skip_ flag[x0][yO][cldx]

ae(v)

Techniques of this disclosure include restricting intra
transform skipping to luma components. To disable the
signaling of the transform_skip_flag for chroma, the residual
coding syntax change is indicated in Table 3 (see italics). In
this solution, transform skipping is not signaled for chroma.

TABLE 3

15

To avoid drift between encoder and decoder, the rule that is
employed by the encoder must also be applied by the
decoder.

This disclosure describes techniques for deriving Chroma
transform_skip_flag values from Luma (4:4:4). If the

Residual coding syntax change to restrict signaling of transform skip flag to luma

residual__coding(%0, y0, log2TrafoWidth, log2TrafoHeight, scanldx, cldx) { Descriptor

If{ transform_ skip_ enabled_ flag && !cu_ transquant_bypass_ flag &&
(PredMode = = MODE__INTRA) && (cldx = = 0) &&
(log2TrafoWidth = = 2) && (log2TrafoHeight = = 2))
transform_ skip_ flag[x0][yO][¢ldx]

ae(v)

This disclosure describes techniques for deriving chroma
transform_skip_flag values from luma (4:2:0). The current
fast encoder mode (HM?7.0) derives the values of the chroma
transform_skip_flags from the wvalues of the luma
transform_skip_flags. If the chroma type is 4:2:0, then 4
luma 4x4 intra TUs correspond with one chroma 4x4 intra
TU. In addition, if transform skipping would be enabled for
the 8x8 TU size, then one luma 8x8 intra TU would
correspond with one chroma 4x4 intra TU. The HM?7.0
encoder determines the value of the chroma transform_
skip_flag for the chroma 4x4 intra TU as follows. If at least
three of the four luma 4x4 intra TUs have a transform_
skip_flag value equal to true, then the corresponding trans-
form_skip_flag of the chroma 4x4 intra TU is set equal to
true. However, the HM7.0 encoder signals this derived
chroma transform_skip_flag, which represents an overhead.
The solution is to disable signaling of the chroma trans-
form_skip_flag and instead derive the chroma transform
skip mode at the decoder side from the values of the luma
transform_skip_flags or corresponding luma components.
To avoid drift between the encoder and decoder, the rule that
is employed by the encoder must also be applied by the
decoder.

This disclosure describes techniques for deriving Chroma
transform_skip_flag Values from Luma (4:2:2). If the
chroma format is 4:2:2, then the derivation of chroma
transform_skip_flag values from luma flag values, may be
achieved as follows. In the 4:2:2 format, two horizontally
adjacent luma 4x4 intra TUs correspond with one chroma
4x4 intra TU. In this case, the chroma transform_skip_flag
may be assigned value true, if at least one of the two
corresponding luma transform_skip_flags equals true. Alter-
natively, the chroma transform_skip_flag may be assigned
the value true, if both corresponding luma flags equal true.

40

45

50

55

60

65

chroma format is 4:4:4, then the derivation of chroma
transform_skip_flag values from luma flag values, may be
achieved as follows. In the 4:4:4 format, each luma 4x4 intra
TU corresponds with one chroma 4x4 intra TU. Hence, the
chroma transform_skip_flag may be assigned the value true,
if the corresponding luma transform_skip_flag equals true.
To avoid drift between encoder and decoder, the rule that is
employed by the encoder must also be applied by the
decoder.

This disclosure describes techniques for bypass coding of
transform_skip_flag. In the current transform skipping
method, the transform_skip_flag is CABAC coded with one
context per luma/chroma component. Alternatively, the
transform_skip_flag may be bypass coded. In general, video
encoder 20 and video decoder 30 may be configured to
perform any or all of the techniques described above, alone
or in any combination.

FIG. 5 is a block diagram illustrating an example video
encoder 20 that may implement the techniques described in
this disclosure. Video encoder 20 may perform intra- and
inter-coding of video blocks within video slices. Intra-
coding relies on spatial prediction to reduce or remove
spatial redundancy in video within a given video frame or
picture. Inter-coding relies on temporal prediction to reduce
or remove temporal redundancy in video within adjacent
frames or pictures of a video sequence. Intra-mode (I mode)
may refer to any of several spatial based compression
modes. Inter-modes, such as uni-directional prediction (P
mode) or bi-prediction (B mode), may refer to any of several
temporal-based compression modes.

In the example of FIG. 5, video encoder 20 includes a
partitioning unit 35, prediction unit 41, filter unit 63, refer-
ence picture memory 64, summer 50, transform processing
unit 52, quantization unit 54, and entropy encoding unit 56.

US 9,426,466 B2

17

Prediction unit 41 includes motion estimation unit 42,
motion compensation unit 44, and intra-prediction process-
ing unit 46. For video block reconstruction, video encoder
20 also includes inverse quantization unit 58, inverse trans-
form processing unit 60, and summer 62. Filter unit 63 is
intended to represent one or more loop filters such as a
deblocking filter, an adaptive loop filter (ALF), and a sample
adaptive offset (SAO) filter. Although filter unit 63 is shown
in FIG. 5 as being an in loop filter, in other configurations,
filter unit 63 may be implemented as a post loop filter.

As shown in FI1G. 5, video encoder 20 receives video data,
and partitioning unit 35 partitions the data into video blocks.
This partitioning may also include partitioning into slices,
tiles, or other larger units, as wells as video block partition-
ing, e.g., according to a quadtree structure of LCUs and
CUs. Video encoder 20 generally illustrates the components
that encode video blocks within a video slice to be encoded.
The slice may be divided into multiple video blocks (and
possibly into sets of video blocks referred to as tiles).
Prediction unit 41 may select one of a plurality of possible
coding modes, such as one of a plurality of intra coding
modes or one of a plurality of inter coding modes, for the
current video block based on error results (e.g., coding rate
and the level of distortion). Prediction unit 41 may provide
the resulting intra- or inter-coded block to summer 50 to
generate residual block data and to summer 62 to reconstruct
the encoded block for use as a reference picture.

Intra-prediction processing unit 46 within prediction unit
41 may perform intra-predictive coding of the current video
block relative to one or more neighboring blocks in the same
frame or slice as the current block to be coded to provide
spatial compression. Motion estimation unit 42 and motion
compensation unit 44 within prediction unit 41 perform
inter-predictive coding of the current video block relative to
one or more predictive blocks in one or more reference
pictures to provide temporal compression.

Motion estimation unit 42 may be configured to determine
the inter-prediction mode for a video slice according to a
predetermined pattern for a video sequence. The predeter-
mined pattern may designate video slices in the sequence as
P slices, B slices or GPB slices. Motion estimation unit 42
and motion compensation unit 44 may be highly integrated,
but are illustrated separately for conceptual purposes.
Motion estimation, performed by motion estimation unit 42,
is the process of generating motion vectors, which estimate
motion for video blocks. A motion vector, for example, may
indicate the displacement of a PU of a video block within a
current video frame or picture relative to a predictive block
within a reference picture.

A predictive block is a block that is found to closely match
the PU of the video block to be coded in terms of pixel
difference, which may be determined by sum of absolute
difference (SAD), sum of square difference (SSD), or other
difference metrics. In some examples, video encoder 20 may
calculate values for sub-integer pixel positions of reference
pictures stored in reference picture memory 64. For
example, video encoder 20 may interpolate values of one-
quarter pixel positions, one-eighth pixel positions, or other
fractional pixel positions of the reference picture. Therefore,
motion estimation unit 42 may perform a motion search
relative to the full pixel positions and fractional pixel
positions and output a motion vector with fractional pixel
precision.

Motion estimation unit 42 calculates a motion vector for
a PU of a video block in an inter-coded slice by comparing
the position of the PU to the position of a predictive block
of a reference picture. The reference picture may be selected

10

15

20

25

30

35

40

45

50

55

60

65

18

from a first reference picture list (List 0) or a second
reference picture list (List 1), each of which identify one or
more reference pictures stored in reference picture memory
64. Motion estimation unit 42 sends the calculated motion
vector to entropy encoding unit 56 and motion compensation
unit 44.

Motion compensation, performed by motion compensa-
tion unit 44, may involve fetching or generating the predic-
tive block based on the motion vector determined by motion
estimation, possibly performing interpolations to sub-pixel
precision. Upon receiving the motion vector for the PU of
the current video block, motion compensation unit 44 may
locate the predictive block to which the motion vector points
in one of the reference picture lists. Video encoder 20 forms
a residual video block by subtracting pixel values of the
predictive block from the pixel values of the current video
block being coded, forming pixel difference values. The
pixel difference values form residual data for the block, and
may include both luma and chroma difference components.
Summer 50 represents the component or components that
perform this subtraction operation. Motion compensation
unit 44 may also generate syntax elements associated with
the video blocks and the video slice for use by video decoder
30 in decoding the video blocks of the video slice.

Intra-prediction processing unit 46 may intra-predict a
current block, as an alternative to the inter-prediction per-
formed by motion estimation unit 42 and motion compen-
sation unit 44, as described above. In particular, intra-
prediction processing unit 46 may determine an intra-
prediction mode to use to encode a current block. In some
examples, intra-prediction processing unit 46 may encode a
current block using various intra-prediction modes, e.g.,
during separate encoding passes, and intra-prediction pro-
cessing unit 46 (or mode select unit 40, in some examples)
may select an appropriate intra-prediction mode to use from
the tested modes. For example, intra-prediction processing
unit 46 may calculate rate-distortion values using a rate-
distortion analysis for the various tested intra-prediction
modes, and select the intra-prediction mode having the best
rate-distortion characteristics among the tested modes. Rate-
distortion analysis generally determines an amount of dis-
tortion (or error) between an encoded block and an original,
unencoded block that was encoded to produce the encoded
block, as well as a bit rate (that is, a number of bits) used to
produce the encoded block. Intra-prediction processing unit
46 may calculate ratios from the distortions and rates for the
various encoded blocks to determine which intra-prediction
mode exhibits the best rate-distortion value for the block.

In any case, after selecting an intra-prediction mode for a
block, intra-prediction processing unit 46 may provide infor-
mation indicative of the selected intra-prediction mode for
the block to entropy encoding unit 56. Entropy encoding unit
56 may encode the information indicating the selected
intra-prediction mode. After prediction unit 41 generates the
predictive block for the current video block via either
inter-prediction or intra-prediction, video encoder 20 forms
a residual video block by subtracting the predictive block
from the current video block.

As discussed above, the residual video data in the residual
block may be included in one or more TUs, and the TUs may
either be coded in a transform mode or a transform skip
mode. Switch 51 represents a switch, or conceptual switch,
that chooses between the transform mode and the transform
skip mode. When the transform mode is selected, the TUs
are sent to transform processing unit 52, and transform
processing unit 52 transforms the residual video data into
residual transform coefficients using a transform, such as a

US 9,426,466 B2

19

discrete cosine transform (DCT) or a conceptually similar
transform. Transform processing unit 52 may convert the
residual video data from a pixel domain to a transform
domain, such as a frequency domain. As part of the encoding
process, video encoder 20 may test a number of different
coding scenarios to determine a scenario that produces a
desired rate-distortion tradeoff. As part of testing these
various scenarios, video encoder 20 may, for example, test
scenarios that include coding some TUs in a transform mode
while in other scenarios those TUs may be coded in a
transform skip mode.

Syntax elements, such as the transform_skip_
enabled_flag and transform_skip_flag discussed above, may
be included in the encoded video bitstream to identify if a
particular TU is coded using a transform mode or a trans-
form skip mode. As described above, the TUs included in the
encoded bitstream include both luma TUs and chroma TUs.
For the luma TUs, video encoder 20 may generate syntax
elements to indicate if the luma TUs are coded in a transform
skip mode. For chroma TUs, however, rather than generating
syntax elements identifying if the chroma TU is coded in a
transform skip mode, video encoder 20 may derive the
syntax elements to determine if the chroma TUs are coded
in the transform skip mode, meaning that video encoder 20
does not explicitly generate syntax elements indicating if the
chroma TUs are coded in the transform skip mode.

As has been described above, according to the techniques
of this disclosure, a video decoder, such as video decoder 30
can derive whether or not a chroma TU is coded in a
transform skip mode based on whether or not corresponding
luma TUs are coded in a transform skip mode. Video
encoder 20 can be configured to encode video data in
accordance with the derivation process implemented by
video decoder 30. For example, if the subsampling format
for a particular chroma TU is 4:4:4, then video encoder 20
can be configured to code a chroma TU and luma TU either
both using a transform mode or both using a transform skip
mode. If the subsampling format for a particular chroma TU
is 4:2:2, then video encoder 20 can be configured to code a
chroma TU using a transform skip mode if both correspond-
ing luma TUs are coded using a transform skip mode or code
a chroma TU using a transform mode if both corresponding
luma TUs are coded using transform mode. If one corre-
sponding luma TU is coded using a transform skip mode and
the other is coded using transform mode, then video encoder
20 may be configured to code the corresponding chroma TU
using either a transform mode or a transform skip mode,
provided video decoder 30 is configured to derive the
transform mode or transform skip mode for the correspond-
ing chroma TU in the same manner. If the subsampling
format for a particular chroma TU is 4:2:0, then video
encoder 20 can be configured to code a chroma TU using a
transform skip mode based on if a threshold number of
corresponding luma TUs are coded using a transform skip
mode. That threshold value may be any value between 1 and
4, again provided video decoder 30 is configured to derive
the transform mode or transform skip mode for the corre-
sponding chroma TU in the same manner.

Transform processing unit 52 may send the resulting
transform coefficients to quantization unit 54. When the
transform skip mode is selected, switch 51 directs the
residual data along data path 53, which bypasses transform
processing unit 52 and sends the pixel domain residual data
to quantization unit 54. Accordingly, when the transform
skip mode is selected, no transform is applied to the residual
data.

10

15

20

25

30

35

40

45

50

55

60

65

20

Quantization unit 54 quantizes the transform coeflicients
in the case of a transform mode or quantizes the pixel
domain residual data in the case of a transform skip mode to
further reduce bit rate. The quantization process may reduce
the bit depth associated with some or all of the values. The
degree of quantization may be modified by adjusting a
quantization parameter. In some examples, quantization unit
54 may then perform a scan of the matrix including the
quantized values. Alternatively, entropy encoding unit 56
may perform the scan.

Following quantization, entropy encoding unit 56 entropy
encodes the quantized values. For example, entropy encod-
ing unit 56 may perform context adaptive variable length
coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic
coding (SBAC), probability interval partitioning entropy
(PIPE) coding or another entropy encoding methodology or
technique. Following the entropy encoding by entropy
encoding unit 56, the encoded bitstream may be transmitted
to video decoder 30, or archived for later transmission or
retrieval by video decoder 30. Entropy encoding unit 56 may
also entropy encode the motion vectors and the other syntax
elements for the current video slice being coded.

For TUs coded in a transform mode, inverse quantization
unit 58 and inverse transform processing unit 60 apply
inverse quantization and inverse transformation, respec-
tively, to reconstruct the residual block in the pixel domain
for later use as a reference block of a reference picture. For
TUs, coded in a transform skip mode, inverse quantization
unit 58 applies inverse quantization to reconstruct the
residual block, but as illustrated by data path 61, inverse
transform processing unit 60 is bypassed. Motion compen-
sation unit 44 may calculate a reference block by adding the
residual block to a predictive block of one of the reference
pictures within one of the reference picture lists. Motion
compensation unit 44 may also apply one or more interpo-
lation filters to the reconstructed residual block to calculate
sub-integer pixel values for use in motion estimation. Sum-
mer 62 adds the reconstructed residual block to the motion
compensated prediction block produced by motion compen-
sation unit 44 to produce a reference block for storage in
reference picture memory 64. The reference block may be
used by motion estimation unit 42 and motion compensation
unit 44 as a reference block to inter-predict a block in a
subsequent video frame or picture.

In this manner, video encoder 20 of FIG. 5 represents an
example of a video encoder configured to determine for a
chroma transform block (TB) a sub-sampling format for the
chroma TB; based on the sub-sampling format for the
chroma TB, identify one or more corresponding luma TBs;
generate, for each of the one or more corresponding luma
TBs, a flag indicating if the each one or more luma TBs are
coded using a transform skip mode; and, based on a number
of the one or more corresponding luma TBs coded using the
transform skip mode being greater than or equal to a
threshold value, encode the chroma TB using the transform
skip mode without generating a syntax element indicating
the chroma TB is coded using the transform skip mode.

FIG. 6 is a block diagram illustrating an example video
decoder 30 that may implement the techniques described in
this disclosure. In the example of FIG. 6, video decoder 30
includes an entropy decoding unit 80, prediction unit 81,
inverse quantization unit 86, transform skip processing unit
87, inverse transform processing unit 88, summer 90, filter
unit 91, and reference picture memory 92. Prediction unit 81
includes motion compensation unit 82 and intra-prediction
processing unit 84. Video decoder 30 may, in some

US 9,426,466 B2

21

examples, perform a decoding pass generally reciprocal to
the encoding pass described with respect to video encoder
20 from FIG. 5.

During the decoding process, video decoder 30 receives
an encoded video bitstream that represents video blocks of
an encoded video slice and associated syntax elements from
video encoder 20. Entropy decoding unit 80 of video
decoder 30 entropy decodes the bitstream to generate quan-
tized residual values, motion vectors, and other syntax
elements. Such syntax elements may, for example, include
the transform_skip_enabled_flag and transform_skip_flag
syntax elements discussed above. The encoded video bit-
stream may further include some TUs coded in a transform
mode and some TUs coded in a transform skip mode. For
TUs coded in a transform mode, the quantized residual
values represent quantized transform coefficients, while for
TUs coded in a transform skip mode, the quantized residual
values may represent quantized residual values. Entropy
decoding unit 80 forwards the motion vectors and other
syntax elements to prediction unit 81. Entropy decoding unit
80 also forwards syntax elements, such as the
transform_skip_enabled_flag and transform_skip_flag syn-
tax elements, to transform skip processing unit 87 which
implements the decision for whether to code TUs in a
transform mode or a transform skip mode. Video decoder 30
may receive the syntax elements in a PPS, SPS, APS, at the
video slice level and/or the video block level.

When the video slice is coded as an intra-coded (I) slice,
intra-prediction processing unit 84 of prediction unit 81 may
generate prediction data for a video block of the current
video slice based on a signaled intra prediction mode and
data from previously decoded blocks of the current frame or
picture. When the video frame is coded as an inter-coded
(i.e., B, P or GPB) slice, motion compensation unit 82 of
prediction unit 81 produces predictive blocks for a video
block of the current video slice based on the motion vectors
and other syntax elements received from entropy decoding
unit 80. The predictive blocks may be produced from one of
the reference pictures within one of the reference picture
lists. Video decoder 30 may construct the reference frame
lists, List 0 and List 1, using default construction techniques
based on reference pictures stored in reference picture
memory 92.

Motion compensation unit 82 determines prediction infor-
mation for a video block of the current video slice by parsing
the motion vectors and other syntax elements, and uses the
prediction information to produce the predictive blocks for
the current video block being decoded. For example, motion
compensation unit 82 uses some of the received syntax
elements to determine a prediction mode (e.g., intra- or
inter-prediction) used to code the video blocks of the video
slice, an inter-prediction slice type (e.g., B slice, P slice, or
GPB slice), construction information for one or more of the
reference picture lists for the slice, motion vectors for each
inter-encoded video block of the slice, inter-prediction status
for each inter-coded video block of the slice, and other
information to decode the video blocks in the current video
slice.

Motion compensation unit 82 may also perform interpo-
lation based on interpolation filters. Motion compensation
unit 82 may use interpolation filters as used by video
encoder 20 during encoding of the video blocks to calculate
interpolated values for sub-integer pixels of reference
blocks. In this case, motion compensation unit 82 may
determine the interpolation filters used by video encoder 20
from the received syntax elements and use the interpolation
filters to produce predictive blocks.

40

45

22

Inverse quantization unit 86 inverse quantizes, i.e., de-
quantizes, the quantized residual values provided in the
bitstream and decoded by entropy decoding unit 80. The
inverse quantization process may include use of a quanti-
zation parameter calculated by video encoder 20 for each
video block in the video slice to determine a degree of
quantization and, likewise, a degree of inverse quantization
that should be applied.

Transform skip processing unit 87 is configured to imple-
ment either a transform mode or a transform skip mode. For
TUs coded in a transform mode, inverse transform process-
ing unit 88 applies an inverse transform, e.g., an inverse
DCT, an inverse integer transform, or a conceptually similar
inverse transform process, to the transform coefficients in
order to produce residual blocks in the pixel domain. For
TUs coded in a transform skip mode, transform skip pro-
cessing unit 87 directs the dequantized residual values along
data path 89, which bypasses inverse transform processing
unit 88.

As described above, the TUs received in the encoded
bitstream include both luma TUs and chroma TUs. For the
luma TUs, transform skip processing unit 87 may determine
if the luma TUs are coded in a transform skip mode based
on syntax elements associated with the luma TUs. For
chroma TUs, however, rather than receiving syntax elements
identifying if the chroma TU is coded in a transform skip
mode, transform skip processing unit 87 may derive the
syntax elements to determine if the chroma TUs are coded
in the transform skip mode, meaning that video decoder 30
does not explicitly receive syntax elements indicating if the
chroma TUs are coded in the transform skip mode.

For example, for a particular chroma TU; transform skip
processing unit 87 can determine for the chroma TU a
sub-sampling format. Based on the sub-sampling format for
the chroma TU, transform skip processing unit 87 can
identify one or more corresponding luma TBs. For example,
if the sub-sampling format corresponds to a 4:4:4 format,
then transform skip processing unit 87 can identify one
corresponding luma TB; if the sub-sampling format corre-
sponds to a 4:2:2 format, then transform skip processing unit
87 can identify two corresponding luma TBs; or, if the
sub-sampling format corresponds to a 4:2:0 format, then
transform skip processing unit 87 can identify four corre-
sponding luma TBs. For each of the one or more corre-
sponding luma TBs, transform skip processing unit 87 can
determine if the corresponding luma TB is coded using a
transform skip mode and based on a number of the corre-
sponding luma TBs coded using the transform skip mode
being greater than or equal to a threshold value, transform
skip processing unit 87 can determine if the chroma TB is
coded in the transform skip mode.

After motion compensation unit 82 generates the predic-
tive block for the current video block based on the motion
vectors and other syntax elements, video decoder 30 forms
a decoded video block by summing the residual blocks with
the corresponding predictive blocks generated by motion
compensation unit 82. Summer 90 represents the component
or components that perform this summation operation. If
desired, loop filters (either in the coding loop or after the
coding loop) may also be used to smooth pixel transitions,
or otherwise improve the video quality. Filter unit 91 is
intended to represent one or more loop filters such as a
deblocking filter, an adaptive loop filter (ALF), and a sample
adaptive offset (SAO) filter. Although filter unit 91 is shown
in FIG. 6 as being an in loop filter, in other configurations,
filter unit 91 may be implemented as a post loop filter. The
decoded video blocks in a given frame or picture are then

US 9,426,466 B2

23

stored in reference picture memory 92, which stores refer-
ence pictures used for subsequent motion compensation.
Reference picture memory 92 also stores decoded video for
later presentation on a display device, such as display device
32 of FIG. 1.

In this manner, video decoder 30 of FIG. 6 represents an
example of a video decoder configured to: determine for a
chroma transform block (TB) a sub-sampling format for the
chroma TB; based on the sub-sampling format for the
chroma TB, identify one or more corresponding luma TBs;
receive, for each of the one or more corresponding luma
TBs, a flag indicating if the corresponding luma TB is coded
using a transform skip mode; and, based on a number of the
one or more corresponding luma TBs coded using the
transform skip mode being greater than or equal to a
threshold value, determining that the chroma TB is coded in
the transform skip mode.

FIG. 7 is a flow diagram illustrating a method for encod-
ing video data in accordance with the techniques of this
disclosure. The techniques of FIG. 7 may, for example, be
performed by video encoder 20. Video encoder 20 deter-
mines for a chroma TB a sub-sampling format for the
chroma TB (171). The sub-sampling format may, for
example, be a 4:4:4 format, a 4:2:2 format, or a 4:2:0 format.
Based on the sub-sampling format for the chroma TB, video
encoder 20 identifies one or more corresponding luma TBs
(172). The number of corresponding luma TBs may, for
example, be one for a chroma TB with a 4:4:4 format, two
for a chroma TB with a 4:2:2 format, or four for a chroma
TB with a 4:2:0 format. Video encoder 20 determines, for
each of the one or more corresponding luma TBs, if the
corresponding luma TB is coded using a transform skip
mode (173). Based on a number of the one or more corre-
sponding luma TBs coded using the transform skip mode
being greater than or equal to a threshold value, video
encoder 20 encodes the chroma TB using a transform skip
mode without generating a syntax element indicating the
chroma TB is coded using the transform skip mode (174).

FIG. 8 is a flow diagram illustrating a method for decod-
ing video data in accordance with the techniques of this
disclosure. The techniques of FIG. 8 may, for example, be
performed by video decoder 30. Video decoder 30 deter-
mines for a chroma TB a sub-sampling format for the
chroma TB (181). The sub-sampling format may, for
example, be a 4:4:4 format, a 4:2:2 format, or a 4:2:0 format.
Based on the sub-sampling format for the chroma TB, video
decoder 30 identifies one or more corresponding luma TBs
(182). The number of corresponding luma TBs may, for
example, be one for a chroma TB with a 4:4:4 format, two
for a chroma TB with a 4:2:2 format, or four for a chroma
TB with a 4:2:0 format. Video decoder 30 determines, for
each of the one or more corresponding luma TBs, if the
corresponding luma TB is coded using a transform skip
mode (183). Video decoder 30 may, for example, make such
determination by receiving a flag for each of the one or more
corresponding luma TBs. Based on a number of the one or
more corresponding luma TBs coded using the transform
skip mode being greater than or equal to a threshold value,
video decoder 30 determines that the chroma TB is coded in
the transform skip mode (184).

As one example, if the sub-sampling format corresponds
to a 4:4:4 format, then the one or more corresponding luma
TBs may consist of one corresponding luma TB, and the
threshold in such an example may be equal to 1. Thus, if the
corresponding luma TB is decoded using a transform skip
mode, then video decoder 30 also decodes the chroma TB
using the transform skip mode. If the corresponding luma

5

10

15

20

25

30

35

40

45

50

55

60

65

24

TB is decoded not using a transform skip mode, then video
decoder 30 also decodes the chroma TB not using the
transform skip mode. As another example, if the sub-
sampling format corresponds to a 4:2:2 format, then the one
or more corresponding luma TBs may consist of two cor-
responding luma TBs, and the threshold value may be
greater than or equal to 1. Thus, if one or both of the
corresponding luma TBs is decoded using a transform skip
mode, then video decoder 30 also decodes the chroma TB
using the transform skip mode. If both of the corresponding
luma TBs are decoded without using a transform skip mode,
then video decoder 30 also decodes the chroma TB without
using the transform skip mode. In some instances, the
threshold may be two instead of one, such that video decoder
30 only decodes the chroma TB using the transform skip
mode if both corresponding luma TBs are decoded using the
transform skip mode. As another example, if the sub-
sampling format corresponds to a 4:2:0 format, then the one
or more corresponding luma TBs consists of four corre-
sponding luma TB, and the threshold value may be equal to
N, where N is an integer value between 1 and 4. Thus, if N
of the corresponding luma TBs are coded using a transform
skip mode, then video decoder 30 decodes the chroma TB
using the transform skip mode. If less than N of the
corresponding luma TBs are coded without using a trans-
form skip mode, then video decoder 30 also decodes the
chroma TB without using the transform skip mode.

In one or more examples, the functions described may be
implemented in hardware, software, firmware, or any com-
bination thereof. If implemented in software, the functions
may be stored on or transmitted over, as one or more
instructions or code, a computer-readable medium and
executed by a hardware-based processing unit. Computer-
readable media may include computer-readable storage
media, which corresponds to a tangible medium such as data
storage media, or communication media including any
medium that facilitates transfer of a computer program from
one place to another, e.g., according to a communication
protocol. In this manner, computer-readable media generally
may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication
medium such as a signal or carrier wave. Data storage media
may be any available media that can be accessed by one or
more computers or one or more processors to retrieve
instructions, code and/or data structures for implementation
of the techniques described in this disclosure. A computer
program product may include a computer-readable medium.

By way of example, and not limitation, such computer-
readable storage media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash
memory, or any other medium that can be used to store
desired program code in the form of instructions or data
structures and that can be accessed by a computer. Also, any
connection is properly termed a computer-readable medium.
For example, if instructions are transmitted from a website,
server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and micro-
wave, then the coaxial cable, fiber optic cable, twisted pair,
DSL, or wireless technologies such as infrared, radio, and
microwave are included in the definition of medium. It
should be understood, however, that computer-readable stor-
age media and data storage media do not include connec-
tions, carrier waves, signals, or other transient media, but are
instead directed to non-transient, tangible storage media.
Disk and disc, as used herein, includes compact disc (CD),

US 9,426,466 B2

25

laser disc, optical disc, digital versatile disc (DVD), floppy
disk and Blu-ray disc, where disks usually reproduce data
magnetically, while discs reproduce data optically with
lasers. Combinations of the above should also be included
within the scope of computer-readable media.

Instructions may be executed by one or more processors,
such as one or more digital signal processors (DSPs),
general purpose microprocessors, application specific inte-
grated circuits (ASICs), field programmable logic arrays
(FPGAs), or other equivalent integrated or discrete logic
circuitry. Accordingly, the term “processor,” as used herein
may refer to any of the foregoing structure or any other
structure suitable for implementation of the techniques
described herein. In addition, in some aspects, the function-
ality described herein may be provided within dedicated
hardware and/or software modules configured for encoding
and decoding, or incorporated in a combined codec. Also,
the techniques could be fully implemented in one or more
circuits or logic elements.

The techniques of this disclosure may be implemented in
a wide variety of devices or apparatuses, including a wire-
less handset, an integrated circuit (IC) or a set of ICs (e.g.,
a chip set). Various components, modules, or units are
described in this disclosure to emphasize functional aspects
of devices configured to perform the disclosed techniques,
but do not necessarily require realization by different hard-
ware units. Rather, as described above, various units may be
combined in a codec hardware unit or provided by a col-
lection of interoperative hardware units, including one or
more processors as described above, in conjunction with
suitable software and/or firmware.

Various examples have been described. These and other
examples are within the scope of the following claims.

What is claimed is:

1. A method of decoding video data, the method com-
prising:

determining a sub-sampling format for a chroma trans-

form block (TB);
based on the sub-sampling format for the chroma TB,
identifying one or more corresponding luma TBs;

determining if a size of a coding unit comprising the
chroma TB is equal to a smallest enabled size for
coding units;
in response to determining that the size of the coding unit
is equal to the smallest enabled size, receiving, for each
of the one or more corresponding luma TBs, a flag
indicating if the corresponding luma TB is coded using
a transform skip mode; and

based on a number of the one or more corresponding luma
TBs coded using the transform skip mode being greater
than or equal to a threshold value, determining that the
chroma TB is coded in the transform skip mode.

2. The method of claim 1, wherein the sub-sampling
format corresponds to a 4:4:4 format, and wherein the one
or more corresponding luma TBs consists of one corre-
sponding luma TB, and wherein the threshold value is equal
to 1.

3. The method of claim 1, wherein the sub-sampling
format corresponds to a 4:2:2 format, and the one or more
corresponding luma TBs consists of two corresponding luma
TBs, and wherein the threshold value is greater than or equal
to 1.

4. The method of claim 1, wherein the sub-sampling
format corresponds to a 4:2:0 format and the one or more
corresponding luma TBs consists of four corresponding
luma TBs, and wherein the threshold value is equal to N,
wherein N is an integer value between 1 and 4, inclusive.

10

20

25

30

35

40

45

55

60

65

26

5. The method of claim 1, wherein receiving, for each of
the one or more corresponding luma TBs, the flag indicating
if the corresponding luma TB is coded using the transform
skip mode comprises receiving one or more syntax elements
for the corresponding luma TB, wherein the one or more
syntax elements indicate if the corresponding TB is coded
using the transform skip mode.

6. The method of claim 1, wherein the smallest enabled
size is determined based on a parameter set for coded video.

7. The method of claim 1, wherein the flag indicates if
luminance components of the coding unit are coded using a
transform skip mode.

8. The method of claim 7, further comprising:

based on at least the flag indicating if luminance compo-

nents of the coding unit are coded using a transform
skip mode, deriving if chrominance components of the
coding unit are coded using a transform skip mode.

9. A method of encoding video data, the method com-
prising:

determining a sub-sampling format for a chroma trans-

form block (TB);
based on the sub-sampling format for the chroma TB,
identifying one or more corresponding luma TBs;

determining if a size of a coding unit comprising the
chroma TB is equal to a smallest enabled size for
coding units;

in response to determining that the size of the coding unit

is equal to the smallest enabled size, generating, for
each of the one or more corresponding luma TBs, a flag
indicating if the corresponding TB is coded using a
transform skip mode; and

based on a number of the one or more corresponding luma

TBs coded using the transform skip mode being greater
than or equal to a threshold value, encoding the chroma
TB using the transform skip mode without generating
a syntax element indicating the chroma TB is coded
using the transform skip mode.

10. The method of claim 9, wherein the sub-sampling
format corresponds to a 4:4:4 format, and wherein the one
or more corresponding luma TBs consists of one corre-
sponding luma TB, and wherein the threshold value is equal
to 1.

11. The method of claim 9, wherein the sub-sampling
format corresponds to a 4:2:2 format, and the one or more
corresponding luma TBs consists of two corresponding luma
TBs, and wherein the threshold value is greater than or equal
to 1.

12. The method of claim 9, wherein the sub-sampling
format corresponds to a 4:2:0 format and the one or more
corresponding luma TBs consists of four corresponding
luma TBs, and wherein the threshold value is equal to N,
wherein N is an integer value between 1 and 4, inclusive.

13. The method of claim 9, wherein generating, for each
of the one or more corresponding luma TBs, the flag
indicating if the corresponding TB is coded using the
transform skip mode comprises generating one or more
syntax elements for the corresponding luma TB, wherein the
one or more syntax elements indicate if the corresponding
luma TB is coded using the transform skip mode.

14. A device for coding video data, the device comprising:

a memory configured to store video data; and

a video coder configured to:

determine a sub-sampling format for a chroma trans-
form block (TB) of the video data;

based on the sub-sampling format for the chroma TB,
identify one or more corresponding luma TBs;

US 9,426,466 B2

27

determine if a size of a coding unit comprising the
chroma TB is equal to a smallest enabled size for
coding units;

in response to determining that the size of the coding
unit is equal to the smallest enabled size, code, for
each of the one or more corresponding luma TBs, a
flag indicating if the corresponding luma TB is coded
using a transform skip mode; and

based on a number of the one or more corresponding
luma TBs coded using the transform skip mode
being greater than or equal to a threshold value,
determine that the chroma TB is coded in the trans-
form skip mode.

15. The device of claim 14, wherein the sub-sampling
format corresponds to a 4:4:4 format, and wherein the one
or more corresponding luma TBs consists of one corre-
sponding luma TB, and wherein the threshold value is equal
to 1.

16. The device of claim 14, wherein the sub-sampling
format corresponds to a 4:2:2 format, and the one or more
corresponding luma TBs consists of two corresponding luma
TBs, and wherein the threshold value is greater than or equal
to 1.

17. The device of claim 14, wherein the sub-sampling
format corresponds to a 4:2:0 format and the one or more
corresponding luma TBs consists of four corresponding
luma TBs, and wherein the threshold value is equal to N,
wherein N is an integer value between 1 and 4, inclusive.

18. The device of claim 14, wherein the video coder
determines, for each of the one or more corresponding luma
TBs, if the corresponding luma TB is coded using the
transform skip mode by coding one or more syntax elements
for the corresponding luma TB, wherein the one or more
syntax elements indicate if the corresponding luma TB is
coded using the transform skip mode.

19. The device of claim 14, wherein the smallest enabled
size is determined based on a parameter set for coded video.

20. The device of claim 14, wherein the flag indicates if
luminance components of the coding unit are coded using a
transform skip mode.

21. The device of claim 20, wherein the video coder is
further configured to, based on at least the flag indicating if
luminance components of the coding unit are coded using a
transform skip mode, derive if chrominance components of
the coding unit are coded using a transform skip mode.

22. The device of claim 14, wherein the video coder
comprises a video decoder.

23. The device of claim 14, wherein the video coder
comprises a video encoder.

24. The device of claim 14, wherein the device comprises
at least one of:

an integrated circuit;

a microprocessor; and

a wireless communication device that includes the video

coder.

25. An apparatus for coding video data, the apparatus
comprising:

means for determining a sub-sampling format for a

chroma transform block (TB);
means for identifying one or more corresponding luma
TBs based on the sub-sampling format for the chroma
TB;

means for determining if a size of a coding unit compris-
ing the chroma TB is equal to a smallest enabled size
for coding units;

means for coding, in response to determining that the size

of the coding unit is equal to the smallest enabled size,

10

15

20

25

30

35

40

45

50

55

60

65

28

for each of the one or more corresponding luma TBs, a
flag indicating if the corresponding luma TB is coded
using a transform skip mode; and

means for determining that the chroma TB is coded in the

transform skip mode based on a number of the one or
more corresponding luma TBs coded using the trans-
form skip mode being greater than or equal to a
threshold value.

26. The apparatus of claim 25, wherein the sub-sampling
format corresponds to a 4:4:4 format, and wherein the one
or more corresponding luma TBs consists of one corre-
sponding luma TB, and wherein the threshold value is equal
to 1.

27. The apparatus of claim 25, wherein the sub-sampling
format corresponds to a 4:2:2 format, and the one or more
corresponding luma TBs consists of two corresponding luma
TBs, and wherein the threshold value is greater than or equal
to 1.

28. The apparatus of claim 25, wherein the sub-sampling
format corresponds to a 4:2:0 format and the one or more
corresponding luma TBs consists of four corresponding
luma TBs, and wherein the threshold value is equal to N,
wherein N is an integer value between 1 and 4, inclusive.

29. The apparatus of claim 25, wherein

the means for coding, for each of the one or more

corresponding luma TBs, the flag indicating if the
corresponding luma TB is coded using a transform skip
mode comprises means for decoding.

30. The apparatus of claim 25, wherein

the means for coding, for each of the one or more

corresponding luma TBs, the flag indicating if the
corresponding luma TB is coded using a transform skip
mode comprises means for encoding.

31. A computer readable storage medium storing instruc-
tions that when executed cause one or more processors to:

determine a sub-sampling format for a chroma transform

block (TB);
identify one or more corresponding luma TBs based on
the sub-sampling format for the chroma TB;

determine if a size of a coding unit comprising the chroma
TB is equal to a smallest enabled size for coding units;

in response to determining that the size of the coding unit
is equal to the smallest enabled size, code, for each of
the one or more corresponding luma TBs, a flag indi-
cating if the corresponding luma TB is coded using a
transform skip mode; and

determine that the chroma TB is coded in the transform

skip mode based on a number of the one or more
corresponding luma TBs coded using the transform
skip mode being greater than or equal to a threshold
value.

32. The computer readable storage medium of claim 31,
wherein the sub-sampling format corresponds to a 4:4:4
format, and wherein the one or more corresponding luma
TBs consists of one corresponding luma TB, and wherein
the threshold value is equal to 1.

33. The computer readable storage medium of claim 31,
wherein the sub-sampling format corresponds to a 4:2:2
format, and the one or more corresponding luma TBs
consists of two corresponding luma TBs, and wherein the
threshold value is greater than or equal to 1.

34. The computer readable storage medium of claim 31,
wherein the sub-sampling format corresponds to a 4:2:0
format and the one or more corresponding luma TBs consists

US 9,426,466 B2
29

of four corresponding luma TBs, and wherein the threshold
value is equal to N, wherein N is an integer value between
1 and 4, inclusive.

30

